1.0 General

This specification covers the electrical characteristics and general requirements for a Power Distribution System which provides isolation, control, monitoring and distribution of AC power and shall properly interface with the building’s AC power source with sensitive electronic loads. The specified equipment herein shall be referred to as a POWER-PAL. The POWER-PAL includes all components and systems required to install, operate and maintain the system.

2.0 Applicable Documents

2.2 American National Standards Institute Corp. and its Applicable standards C33.4, C39.1, C80.1, C89, C84.1.

2.3 FCC Part 15, Sub-Part J, Class A.

2.4 IEC 435 International Electrotechnical Commission Recommendation "Safety of Data Processing Equipment".

2.5 VDE 0804/3.77 Verbauch Deulscher Elektrotechiker standard. "Telecommunication and Electronic Data Processing Unit and Systems".

2.6 UL 50 Underwriters Laboratories Inc. Standard for Safety. Electrical Cabinets and Boxes.

2.10 VDE 0806 Verbond Deutscher Elektrotechniker Standard "Safety Design".

2.11 CSA 22.1 Canadian Standards Association, "Data Processing Equipment".

2.12 NEMA National Electrical Manufactures Association and its applicable standards ST-20, AB-1, PB-1.

2.13 Local Inspection Authorities having jurisdiction over electrical equipment and its installation.

2.14 MIL-T-27B Dry Transformer Insulation.

3.0 Major Components

The Basic components of the POWER PAL shall consist of: an input power cable, main input circuit breaker, cabinet, multi-shield isolation transformer, internal wiring, single point ground, 42 pole panelboard(s), System Status Panel, conduit landing bracket for output cables and optional features.

4.0 System Package and Construction

4.1 Agency approval.

The POWER PAL shall be UL Listed under standard 1950.

4.2 Input Power Cable
The Input Power Cable shall be 10', type DP and be of liquid tight construction. Electrical conductors shall be sized to carry 125% of full load capacity of the POWER PAL and be UL Listed cable. The ground conductor shall be full sized, equal to or greater than the phase conductor. Proper fittings shall supplied to connect to an optional input junction box. All conductors will be multi stranded copper.

4.3 Input Main Circuit Breaker (IMCB)

The POWER PAL shall be equipped with a main input circuit breaker with a 24V shunt trip provided. The IMCB shall be rated for 125% of full load capacity and be of thermal magnetic molded case construction. The IMCB shall have a minimum of 25,000 ampere interrupting capacity (AIC). Provisions for higher interrupting capacity shall be incorporated into the design to accommodate this type of breaker if required. The IMCB shall be UL Listed.

4.4 Cabinet

The Cabinet shall consist of the following:

1. Frame

The Frame shall be of tubular construction of heavy gauge metal and welded for maximum strength. Each frame shall be treated before paint is applied and be textured baked enamel. The base shall be supported by six (6) movable casters. Four (4) leveling jacks shall be provided and be front accessible.

2. Internal Sheet Metal

Internal sheet metal not welded to the frame shall be plated with Gold Zinc Wash or galvanized to ensure RFI, EMI susceptibility is reduced to the absolute minimum.

3. Removable Access Panels

Removable side, front and rear panels shall be provided. Access to the IMCB and distribution panelboard circuit breakers shall be through a heavy metal door attached with a continuous piano type hinge and held shut with a keyed door latch. Removable front access plates shall be provided for adding output cables to the POWER PAL. All exposed access screws shall be bright nickel plated or black oxide plating.

4. Top Cover

A top screen shall be provided with a minimum of 3/32" holes on 1/8" centers to prevent metal objects from falling into the POWER PAL.

4.5 Isolation Transformer

A multi shielded, convection cooled, 3 phase, isolation transformer shall be provided. Construction of the transformer shall separate the Primary connections and the Secondary. The secondary terminals shall be at opposite ends of the coil from the primary terminals to minimize the possibility of transverse mode noise injection. A copper foil ground shield shall be provided to allow a large surface area for shunting RFI signals on the core to ground. The isolation transformer shall be mounted on rubber isolation pads to prevent 60Hz hum of the core from being transmitted to the frame. The transformer core clamp shall be grounded to the frame through a 1" copper strap. The Transformer insulation system shall be 220°C. Full load taps shall be provided (2) FCAN and (4) FCBN for manually adjusting the secondary voltage to nominal. Two (2) temperature monitors shall be provided; 140° C (alarm) and 160° C (shut-down). The transformer shall be 150° C temperature rise.

4.6 Internal Wiring

All internal wiring shall be UL Listed appliance wire or Power wiring of multi stranded construction, combined into cables or bundles, tied securely together. All wiring shall be clearly marked using wiring markers. Circuit boards shall utilize ribbon cable to the extent practical, for ease of removal and replacement. All logic and control connections shall be routed away from power runs for noise suppression. Secondary and Primary Power wiring from transformer shall not pass through the same access holes in the transformer shield. When in close proximity, secondary and Primary wiring shall cross at a 90 degree angle to minimize the injection of transient electrical noise between the two circuits.

4.7 Single Point Ground (SPG)
A single point ground bus shall be provided and shall be of copper construction. Minimum thickness shall be 1/4" X 1" and be silver or cadmium plated to provide the lowest possible resistance to all ground wires secured to the SPG. The following shall be grounded to the SPG:

1. Equipment ground bus(es).

2. Neutral (star of isolation transformer).

3. Core of the Transformer.

4. Primary and Secondary shields.

5. Frame.

6. Equipment grounding conductor from the branch circuit(s).

7. System monitoring electronics.

8. All output conduits though the output conduit landing plate.

9. The input conduit though the input conduit landing plate.

4.8 Output Panelboard(s)

One or more output panelboards with secondary circuit breaker protection (optional) shall be provided. The POWER PAL shall be so constructed to accommodate plug-in/bolt-on circuit breakers. These breakers shall be of high industrial quality grade. Each panelboard shall accommodate 42 circuit breaker pole positions with a separate equipment copper ground bus and copper neutral bus rated for 200% of nominal phase current for each panelboard. The equipment ground bus shall not be shared between panelboards.

4.9 Metering: (Standard)

The standard Monitor panel shall offer up to 49 highly accurate, real-time, true RMS readings. Max/Min demand values are available for every instantaneous reading. Metering capabilities shall include but not limited to the following features for monitoring and alarm detection:

1. Metering:

 Volts: phase to phase and phase to neutral
 Amps: Each phase and neutral
 Power: Each phase, KVA
 Frequency: Total

2. Alarms:

 Over / Under voltage phase to phase and phase to neutral
 Voltage phase reversals
 Input phase loss
 Input phase rotation
 1st stage Xfmr over temperature warning
 2nd stage Xfmr over temperature shutdown
 Emergency power off tripped
 Ground amp

3. Metering: (Optional)

 An additional meter to monitor input.

4. Functions:
Reset: Turns off any alarm LEDs after problem has been corrected.
Alarm Silence: Silences the audible alarm.
Audible Alarm: 70 dBA at 3'
Local Emergency
Power Off (LEPO): A guarded, red push button shall be provided to shunt trip the IMCB.

5. External Alarm Interface (Optional):
 Up to 8 external alarm interface channels shall be provided - each channel shall have its own LED to indicate which channel(s) are in an alarm state.

6. Digital communications, ModBus ASCII/RTU or DNP3.0 RS232 or RS485 (Optional)

 Provisions shall be made to interface a REPO to the POWER PAL to provide EPO capability - a terminal block shall be provided and well marked.

8. All metering panel alarms shall have the option of being able to shunt trip the POWER PAL. This option shall be field selectable through monitor panel menu requiring an access password.

4.10 Output Cable conduit Landing Plate
 A Zinc Wash Plated tiered output conduit landing plate shall be provided. Access to the landing plate shall be made from the front of the POWER PAL. The flexible output cables shall be permitted to be attached without threading.

4.11 Input Transient Filter (OPTIONAL)
 The Input Transient Noise Filter network consist of a resistor/capacitor network, installed on the primary, which acts as a large snubber circuit to eliminate high frequency impulses from entering the power system.

4.12 Output Transient Noise Filter (OPTIONAL)
 The Output Transient Noise Filter consist of a capacitor network, installed on the secondary. This capacitor network, when coupled with the primary filter, virtually eliminates most electronic noise from reaching the applied load or being fed back to the unit from noise generating loads.

4.13 Secondary Surge Suppression (SSS) (OPTIONAL)
 A transient suppression network shall be located on the secondary side of the isolation transformer. The SSS shall suppress load induced noise to reduce the sensitivity of one load from another load. The SSS shall have the following characteristics.

 1. Parallel (Shut) Protection
 2. Response time of < 5 ns
 3. Repetitive transients up to 5000/sec
 4. Clamping Voltage:
 1. 160 VAC line to neutral
 2. 274 VAC line to line (208Y/120)
 5. Peak Pulse Power Rating:
 1. 27 KW line to neutral
 2. 13.5 KW line to line
 6. Each device shall be fused for circuit protection. Visual service indicators (one for each phase) shall be
provided to indicate that the SSS is no longer providing protection.

4.14 Output Interconnect Cables (OPTIONAL)

Construction of the optional output cables shall be armored cable type DP. Output cables shall be UL Listed as a field installed option and shall contain a parity ground for noise reduction. Isolated ground (I.G.) receptacles shall be grounded with a separate ground wire that shall be green with a yellow stripe. A separate ground bus shall be provided for the I.G. and shall be bonded to the single point ground bus in the POWER PAL. The output cables shall be of liquid tight construction and be labeled as to circuit number, type, rating and length at each end.

4.15 Manual Restart (OPTIONAL)

The manual restart option will trip the IMCB when a power outage occurs. This will require the operator to manually reset the IMCB when power is restored. This will allow for an orderly start-up of the applied load, preventing possible data loss or tripping of the environmental safety system.

4.16 Ground Integrity Monitor (OPTIONAL)

The Ground Integrity Monitor is utilized to determine the impedance of the ground connection from the PDU back to the service entry. A connection from the PDU to the input power J-box is provided. Customer to provide a sense wire from J-box back to the desired ground connection point.

5.0 Electrical Characteristics

5.1 60 Hz Frequency Units:

1. Output Rating KVA: 15, 30, 50, 75, 100, 125, 150, 200, 225, 250 and 300
2. Input Voltage: 208 VAC or 480 VAC
3. Output Voltage: 208Y/120 VAC
4. Input Frequency Tolerance: 60 Hz ± 3 Hz

5.2 50 Hz Frequency Units:

1. Output Rating KVA: 15, 30, 50, 75, 100, 125, 150, 200, 225, 250 and 300
2. Input Voltage: 380 VAC or 415 VAC
3. Output Voltage: 380Y/220 VAC or 415Y/240
4. Input Frequency Tolerance: 50 Hz ± 3Hz

5.3 Transformer

1. Type: Dry, isolation, multi-shield, all copper, three phase, computer grade, delta-wye
2. Impedance: 3% to 5 % maximum
3. Efficiency: >96 %
4. Load Power Factor: Unity to 0.3 leading or lagging
5. Harmonic Distortion: < 1% maximum added
6. Noise rejection (typical): Common Mode - 120 dB (0.5Hz to 5MHz)
 Normal Mode - 20 dB/decade (2KHz start)

5.4 Audible Noise: Meets or exceeds NEMA Standards.
5.5 Input Voltage Compensation: +5% to -10% manually adjusted.
5.6 Load Rating: Continuous regardless of line/load conditions
5.7 Overload Inrush Rating: 200% of full load for 10 seconds
1000% of full load for 1 cycle
5.8 Meter Accuracy: ± 1%

6.0 Physical characteristics
6.1 Dimensions: 42/84 Poles 126/168 Poles 210/256 Poles
 Height: 72.0" 72.0" 72.0"
 Width: 34.0" 45.0" 56.0"
 Depth: 35.5" 35.5" 35.5"
6.1 Floor Loading Weight: Not to exceed 250 lbs. per sq./ft

7.0 Operating Environment
7.1 Temperature: 32° F to 122° F (0° C to 50° C)
7.2 Humidity: 10% to 90% Relative Humidity
7.3 Altitude: 0 to 7,000 Ft.

8.0 Storage Environment
8.1 Temperature: 0° F to 140° F (-17° C to 60° C)
8.2 Humidity: 0% to 95% Relative Humidity

9.0 Warranty
The manufacturer shall warrant the POWER PAL to be free from defects in both material and workmanship for a period of 24 months from the time of installation or 30 months after shipment whichever occurs first.

10.0 Manufacturer's Qualifications
The unit shall be furnished by a qualified manufacturer who specializes in the manufacturing of Power Distribution Units and has been in business for at least 15 documented years, and with a nation wide service organization. The manufacturer shall be an ISO9001 certified company.

11.0 Qualified Systems
The unit shall be a POWER PAL manufactured by:

OnLine Power,
5701 Smithway Street
City of Commerce, CA 90040